Skip to main content

Research on pipeline state recognition method based on acoustic signal frame PCA

Buy Article:

$17.00 + tax (Refund Policy)

Accurate buried pipeline state recognition based on acoustic signal is a difficult and important issue. This paper proposes a feature extraction method based on acoustic signal frame and principal component analysis (PCA) for condition monitoring in pipes. This method makes use of the property of nonstationary and multivariate data decomposition scales of pipeline acoustic signal. Signal framing is processed on the collected acoustic signals so that the signal frame series is obtained. Then, the sound pressure level of each frame signal is extracted, and the feature vector of the total sound pressure level is established. The PCA method is applied to optimize the extracted feature vector set for detecting the feature parameters. The acoustic signals related to different operating conditions of a pipeline are identified with the support vector machine. Research on a series of experiments shows that the proposed method for acoustic signal analysis can perform effectively for robust feature extraction and pipeline state identification.

The requested document is freely available to subscribers. Users without a subscription can purchase this article.

Sign in

Keywords: 74; 74.5

Document Type: Research Article

Affiliations: School of Mechanical Engineering, Changzhou University

Publication date: 01 July 2022

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content