Skip to main content

Case study: Analysis of acoustic-structure coupling noise characteristics of the exhaust muffler of an internal combustion engine

Buy Article:

$17.00 + tax (Refund Policy)

Exhaust noise produced by internal combustion engines is one of the main problems of vehicle noise, and exhaust mufflers can significantly improve this problem. In fact, the sound waves inside the exhaust muffler will cause the muffler shell to vibrate, causing the muffler to produce shell radiation noise. Therefore, it is necessary to carry out the acoustic-structure coupling analysis of the muffler. This paper improved the design of a prototype straight-through perforated pipe-resistant muffler (design A) and designed a straight-through perforated pipe-resistant muffler with a corrugated lining (design B). Structural modal analysis, acoustic modal analysis, and transmission loss analysis of the two mufflers were carried out. The coupling of the acoustic cavity and structure was considered, and the radiation noise of two kinds of resistant mufflers was comparatively analyzed by the direct-boundary-element method. The acoustic radiation of two kinds of resistant mufflers was studied. The pressure loss of the two kinds of mufflers was studied by aerodynamic analysis. The results suggested that the design B muffler effectively improved the noise reduction performance of the prototype muffler, reduced the vibration displacement amplitude of the shell, and reduced the sound power level of the design A muffler.

The requested document is freely available to subscribers. Users without a subscription can purchase this article.

Sign in

Keywords: 34; 38

Document Type: Research Article

Affiliations: 1: School of Mechanical and Aerospace Engineering, Jilin University 2: Key Laboratory of Biomimetic Engineering (Ministry of Education) and College of Biological and Agricultural Engineering, Jilin University

Publication date: 01 July 2022

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content