
Low-frequency impact sound pressure fields in small rooms within lightweight timber buildings – suggestions for simplified measurement procedures
Low-frequency impact sound insulation, down to 20 Hz, has a significant effect on humans' dissatisfaction due to noise in timber buildings. Today, the low-frequency procedure of the ISO 16283-2:2015 impact sound measurement standard covers the frequency range down to 50 Hz for the use
of an ISO tapping machine, but does not yet cover the use of an ISO rubber ball. Here, microphone grid measurements were made in two small rooms that were excited by an ISO rubber ball from the rooms above. In each grid, 936 microphone positions were used to capture data representing the full
spatial fields of impact sound pressures from 10 to 500 Hz for one excitation location for each room. The data show that the positions at the radiating ceiling surfaces have low maximum sound pressure levels compared to the pressure levels at the floors, especially in the floor corners. First,
a measurement procedure to predict the maximum exposure of low-frequency sound in a room is proposed It is suggested that the maximum values for each frequency band in the corners opposite to the partition being excited (i.e., the floor corners) be used. Second, a procedure to predict the
room average sound pressure level and the prediction's normal distribution is suggested. Iterative measurements with random microphone locations and random excitation locations are used. The advantage of this method is that the required precision and information about the sensitivity due to
different excitation points are obtained.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: RISE Research Institutes of Sweden
Publication date: 01 July 2018
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content