
Sound-absorption coefficient of a pin-holder structure for sound waves incident in the direction perpendicular to the cylinder's axis
In this study, the sound-absorption coefficients of a pin-holder structure consisting of a group of cylinders were estimated and compared with the experimental values for the case where sound waves are incident in the direction perpendicular to the cylinder's axis. To estimate the sound-absorption
coefficient, the gap in the pinholder structure is divided into elements and approximated as being between two parallel planes, taking the exact shape of the divided elements into account. The characteristic impedance and propagation constant of the approximated clearances were calculated
and treated as a one-dimensional transfer matrix. The transfer matrices for each element were used to calculate the sound-absorption coefficient. The calculated theoretical values were compared with the experimental ones. In the experiment, the samples were fabricated using a 3D printer, and
the sound-absorption coefficient was measured using a two-microphone impedance-measurement tube. Although the experimental and theoretical values differed, they showed similar trends. We also found that the prediction error in the practical sound-absorption coefficient could be reduced by
adjusting the diameter of the pins used in the calculation.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: 1: FUKOKU Co., Ltd. 2: Mechanical Engineering Program, Faculty of Engineering, Niigata University 3: Graduate School of Science and Technology, Niigata University
Publication date: 01 March 2022
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content