
A robust torque control approach for gear shift of a parallel hybrid electric vehicle with dual clutch transmission
This article proposes a robust control strategy for gear shifts of a parallel-type hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT). A vehicle equipped with DCT requires accurate torque transfer control through the driveline during gear shifts to ensure
good shift quality in the absence of smoothing effects from torque converter. Unlike conventional vehicles driven only by internal combustion engines, a HEV can utilize the drive motor to improve its gear shifting performances. In this article, an integrated torque and speed control strategy
is developed to minimize the driveline oscillations that occur during gear shifts and to complete the shift as fast as the driver wants. A robust H-infinity controller is designed to control transmission output torque as well as clutch slip speed, particularly in inertia phase that mostly
determines the total shift quality. The effectiveness of the proposed control strategy as well as its robustness is verified by comparative studies using a proven vehicle model developed in MATLAB/SimDriveline.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: Electrification Control Development Team 1, Hyundai Motor Company
Publication date: 01 September 2020
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content