
Wavelet analysis of flame blowout of a liquid-fueled swirl burner with quarls
Lean swirl combustion is the leading burner concept today, used in several steadyoperating applications to ensure awide operating range and low pollutant emissions. Approaching lean blowout is highly desired by design to achieve the lowest possible NOX emission. It was shown earlier
that quarls could significantly extend the operating regime of liquid-fueled swirl burners. In the present study, the accompanying acoustic noise is evaluated by continuous wavelet transformation to show the effect of various quarl geometries on lean flame blowout. However, the desired flame
shape of swirl burners is V, first, and a straight flame, and then a transitory regime can be observed before the developed V-shaped flame through increasing the swirl number. If the axial thrust is excessive, blowout might occur in earlier stages. Presently, the characteristic bands before
blowout were analyzed and evaluated at various quarl geometries, swirl numbers, and atomizing pressures. The latter parameter also acts as an axial thrust control to adjust the swirl number. firstly, a straight flame, then a transitory regime can be observed before the developed V-shaped flame
through increasing the swirl number. If the axial thrust is excessive, blowout might occur in earlier stages. Presently, the characteristic bands before blowout were analyzed and evaluated at various quarl geometries, swirl numbers, and atomizing pressures. The latter parameter also acts as
an axial thrust control to adjust the swirl number.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics
Publication date: 01 September 2019
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content