
Prediction of sound absorption property of metal rubber using general regression neural network
Metal rubber (MR) is an excellent sound absorption material which can be utilized in extremely harsh environments. Traditional experimental studies are incomplete for MR with random structural parameters. In this article, the general regression neural network (GRNN) method is developed
to comprehensively predict the sound absorption behaviors of MR with random structural parameters. Sixty samples are utilized and divided into training and test set. Training set contains 50 samples to establish the GRNN model. Input training parameters include the porosity, wire diameter
and thickness, while the target dates consist of sound absorption coefficients at six central frequencies as well as their average values. The remaining 10 samples constitute the testing set; sound absorption coefficients can be obtained by inputting their structure parameters. Results indicate
that the proposed approach is reliable to design and predict the sound absorption properties of MR in engineering field.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: College of Mechanical Engineering, Yangzhou University
Publication date: 01 September 2018
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content