Skip to main content

Analysis of a brake squeal functional model using a linear parameter varying perspective

Buy Article:

$15.00 + tax (Refund Policy)

Brake squeal is a limit cycle vibration induced by mode coupling instability that depends on operating conditions such as applied pressure, temperature, and disc velocity. This work proposes a simplified functional model of brake squeal that reproduces the main characteristics observed in a full-scale industrial test campaign: vibration growth, limit cycle saturation, vibration decay and parametric dependence. The proposed functional model differs from the well-known Hoffmann model by the introduction of a nonlinear contact law and a quasi-static pressure loading. First, using a harmonic balance perspective, non-linear forces are shown to lead to a pressure and amplitude dependent contact stiffness. This Linear Parameter Varying perspective allows complex mode computations in the pressure/amplitude domain which are then correlated with a series of transient responses of the nonlinear modes for three different pressure profiles. The chosen profiles represent usual experiments: drag where a constant pressure is applied, pressure ramps and pressure oscillations mimicking the effect of wheel spin on the contact surfaces.

The requested document is freely available to subscribers. Users without a subscription can purchase this article.

Sign in

Document Type: Research Article

Affiliations: 1: PIMM, Arts et Metiers Institute of Technology, CNRS, CNAM, HESAM University / SDTools 2: SDTools

Publication date: 04 October 2024

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content