@article {MALACRIDA ALVES:2024:0736-2935:473, title = "Analysis of a brake squeal functional model using a linear parameter varying perspective", journal = "INTER-NOISE and NOISE-CON Congress and Conference Proceedings", parent_itemid = "infobike://ince/incecp", publishercode ="ince", year = "2024", volume = "270", number = "11", publication date ="2024-10-04T00:00:00", pages = "473-484", itemtype = "ARTICLE", issn = "0736-2935", url = "https://ince.publisher.ingentaconnect.com/content/ince/incecp/2024/00000270/00000011/art00052", doi = "doi:10.3397/IN_2024_2355", author = "MALACRIDA ALVES, Guilherme and BALMES, Etienne and MARTIN, Guillaume", abstract = "Brake squeal is a limit cycle vibration induced by mode coupling instability that depends on operating conditions such as applied pressure, temperature, and disc velocity. This work proposes a simplified functional model of brake squeal that reproduces the main characteristics observed in a full-scale industrial test campaign: vibration growth, limit cycle saturation, vibration decay and parametric dependence. The proposed functional model differs from the well-known Hoffmann model by the introduction of a nonlinear contact law and a quasi-static pressure loading. First, using a harmonic balance perspective, non-linear forces are shown to lead to a pressure and amplitude dependent contact stiffness. This Linear Parameter Varying perspective allows complex mode computations in the pressure/amplitude domain which are then correlated with a series of transient responses of the nonlinear modes for three different pressure profiles. The chosen profiles represent usual experiments: drag where a constant pressure is applied, pressure ramps and pressure oscillations mimicking the effect of wheel spin on the contact surfaces.", }