Skip to main content

Denoising by neural network for muzzle blast detection

Buy Article:

$15.00 + tax (Refund Policy)

Acoem develops gunshot detection systems, consisting of a microphone array and software that detects and locates shooters on the battlefield. The performance of such systems is obviously affected by the acoustic environment in which they are operating: in particular, when mounted on a moving military vehicle, the presence of noise reduces the detection performance of the software. To limit the influence of the acoustic environment, a neural network has been developed. Instead of using a heavy convolutional neural network, a lightweight neural network architecture was chosen to limit the computational resources required to embed the algorithm on as many hardware platforms as possible. Thanks to the combination of a two hidden layer perceptron and appropriate signal processing techniques, the detection rate of impulsive muzzle blast waveforms (the wave coming from the detonation and indicating the position of the shooter) is significantly increased. With a rms value of noise of the same order as the muzzle blast peak amplitude, the detect rate is more than doubled with this denoising processing.

The requested document is freely available to subscribers. Users without a subscription can purchase this article.

Sign in

Document Type: Research Article

Affiliations: ACOEM

Publication date: 04 October 2024

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content