
Vibration of microperforated plate with spatial distribution of multiple-sized perforations
Recent works by the authors on homogeneous MPPs have highlighted the structural damping capabilities of MPPs in the low frequency range. The developed theoretical approach was based on the analogy between an MPP and a porous plate. The added damping is due to visco-thermic effects coupled
to fluid-structure interactions. The added damping maxes out at a characteristic frequency depending on perforation diameter. In order to reduce plate vibrations, it was advised to match the characteristic frequency to a plate mode. It is proposed here to maximize the added damping effect
on several vibration modes by focusing on MPPs with multiple-sized perforations and with spatial distribution of perforations. As an extension of the previous analytical model, an approach based on the electro-acoustic analogy is established to capture the effect of multiple-sized perforations.
Moreover, a perforation ratio gradient is included in the approach to model an MPP with inhomogeneous spatial distribution of perforations. Experimental measurements on MPPs validate the proposed analytical model. Results show that: (i) MPP with multiple-sized perforations increases the frequency
band of the effective damping; (ii) the added damping increases when the perforations are distributed around the antinodes of the considered mode, (iii) the two effects can be combined.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: 1: École de technologie supérieure 2: McGill University 3: Université de Bougogne
Publication date: 30 November 2023
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content