
Deep learning-based mechanical fault detection and diagnosis of electric motors using directional characteristics of acoustic signals
Early identification of rotating machinery faults is crucial to avoid catastrophic fail- ures upon installation. Contact-based vibration acquisition approaches are traditionally used for the purpose of machine health monitoring and end-of-line quality control. In complex working conditions,
it can be difficult to perform an accurate accelerometer based vibration test. Acoustic signals (sound pressure and particle velocity) also contain important information about the operating state of mechanical equipment and can be used to detect different faults. A deep learning approach,
namely, one-dimensional convolutional neural networks (1D-CNNs) can directly process raw time signals, thereby eliminating the human dependence on fault feature extraction. An experimental research study is conducted to test the proposed 1D-CNN methodology on three different electric motor
faults. The results from the study indicate that the fault detection performance from the acoustic-based measurement method is very effective and thus can be a good replacement to the conventional accelerometer-based methods for detection and diagnosis of mechanical faults in electric motors.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: Department of Mechanical Engineering, University of Kentucky
Publication date: 01 September 2023
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content