
Free and forced vibration analysis of a Z-shaped structure with multi-span elastic supports
In this paper, an in-plane Z-shaped structure with multi-span elastic supports is proposed to investigate the natural frequency and transmission response through employing in-plane governing equation and transfer matrix method. Based on the solutions of transverse vibration and torsional
vibration, the total transfer matrix for the Z-shaped structure with multi-span elastic supports is derived. Furthermore, natural frequencies and mode shapes of the Z-shaped structure are calculated. Finite element simulation method (FEM) is conducted here to verify the theoretical results.
In order to effectively evaluate the vibration reduction performance, transmission response of the Z-shaped structure under different boundary supports and multi-span elastic supports is analyzed. This work is significant for the vibration reduction of in-plane Z-shaped structure, especially
the multi-span elastic support case in engineering applications.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: College of Traffic and Transportation, Northeast Forestry University
Publication date: 01 September 2022
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content