
Dynamics of a simplified nonlinear model offering insights into the hammering type brake squeal initiation process
This article develops a simplified mechanical system model that offers insights into the hammering type brake squeal initiation process while overcoming a void in the literature. The proposed formulation derives a nonlinear two-degree-of-freedom model where a mass is in contact with
a rigid frictional surface that moves with constant velocity. The kinematic nonlinearities arise from an arrangement of springs that support the mass, as well as from contact loss between the mass and frictional surface. First, the nonlinear governing equations are numerically solved for several
normal force vector arrangements, and a wide range of dynamic responses are observed. Results show that some assumptions made in prior articles are not valid. Second, the nonlinear governing equations are linearized, and the existence of quasistatic sliding motion is sought for selected inclined
spring arrangements. Third, the dynamic stability of the linearized system is examined and compared with the results of a nonlinear model. The coupled modes are found even though some contradictions between the model assumptions and linearized system solutions are observed. Finally, the nonlinear
frequency responses are calculated using the multi-term harmonic balance method although only the contact loss nonlinearity is retained. Shifts in the resonant frequencies during the motion of the pad are clearly observed. In conclusion, the contact loss nonlinearity is found to be crucial,
and as such, it must not be ignored for the squeal source investigation. Finally, the new model offers insight into the squeal initiation process while revealing the limitations of linearized system analyses.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: 1: Istanbul Technical University, Department of Mechanical Engineering 2: The Ohio State University, Department of Mechanical and Aerospace Engineering
Publication date: 01 May 2021
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content