
Application of compact silencers as a noise barrier to a naturally ventilated double-skin façade
A prior study of the acoustical performance of a double-skin facade (DSF) as a noise barrier was carried out based on the percentage of the air vent open surface area, shading louver configurations, and shading louver surface materials. Earlier research findings led to experimental
investigations of the acoustical performance capabilities of compact silencers to replace DSF air vents as both noise barriers and air channels because DSF air cavities, which contribute to natural ventilation performance (e.g., wind-driven or buoyancy-driven performance), are acoustically
vulnerable to noise transmitted through the air vents. This experimental investigation aims to explore noise reduction (NR) through compact silencers applied to DSF air vents. Double-skin facade mock-up test cases were designed based on three test scenarios of a ventilation open surface area:
(1) a 100%air vent open surface area (open mode), (2) a 0% air vent open surface area (closed mode), and (3) a compact silencer. From a data analysis of DSF mock-up test results, the overall NR values of a DSFmock-up ranged from20 to 37 dB(A) depending on the number of compact silencers and
the shading louver orientation used. Configurations of compact silencers and shading louvers helped the DSF mock-up achieve additionalNR values of 5 to 10 dB(A) depending on the test case. Moreover, applying compact silencers to a naturally ventilated DSF mock-up led to significant noise reduction
at low frequencies (125Hz).
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: 1: College of Architecture, Myongji University 2: School of Architecture and Design, University of Kansas
Publication date: 01 May 2021
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content