Skip to main content

A unified procedure for the vibration analysis of elastically restrained Timoshenko beams with variable cross sections

Buy Article:

$17.00 + tax (Refund Policy)

A generalized analytical method is developed for the vibration analysis of Timoshenko beams with elastically restrained ends. For a beam with any variable cross section along the lengthwise direction, the finite element method is the only unified approach to handle those kinds of problems, since the analytical solutions could not be obtained by the governing equations when the cross section area and the second moment of area changing variably lengthwise. In this article, a unified approach is proposed to study the Timoshenko beam with any variable cross sections. The cross section area and second moment of area of the beam are both expanded into cosine series, which are mathematically capable of representing any variable cross section. The translational displacement and rotation of cross section are expressed in the Fourier series by adding some admissible functions which are used to handle the elastic boundary conditions with more accuracy and high convergence rate. By using Hamilton's principle, the eigenvalues and the coefficients of the Fourier series are both obtained. Some examples are presented to illustrate the excellent accuracy of this method. Analytical solutions of the vibration of the beam are achieved for different combinations of boundary conditions including classical and elastically restrained ones. The derived results can be used as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of Timoshenko beams with any variable cross section.

The requested document is freely available to subscribers. Users without a subscription can purchase this article.

Sign in

Keywords: 42

Document Type: Research Article

Affiliations: School of Mechanical and Electric Engineering, Soochow University

Publication date: 20 January 2020

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content