
A variable step-size filtered-x least mean square algorithm for continuously varying noise
The filtered-x least mean square algorithm (FxLMS) is a widely used technique in active noise control. In a conventional FxLMS algorithm, the value of convergence coefficient is kept constant which may not yield optimum performance if frequency of the primary noise changes. For some
frequencies, this may result into a slower convergence and for some other frequencies, it may lead to instability. To deal with this situation, a normalized FxLMS algorithm, in which the convergence coefficient is normalized with the power of the filtered reference signal, is proposed. In
the eigenvalue equalization method, the magnitude of secondary path transfer function is equalized such that the power of filtered reference signal remains equal at all the frequencies. The method proposed in this paper attempts to optimally adapt the convergence coefficient of the FxLMS algorithm
for continuously varying noise. It is based on estimating how frequency of noise is varying using fast Fourier transforms of the reference signal and then, using this information to optimally adapt the convergence coefficient. The optimum value of the convergence coefficient is decided based
upon the power and delay of the filtered reference signal and sampling frequency. A numerical study in a 3D acoustic cavity is presented to test the effectiveness of the proposed method and the results are also compared with the conventional FxLMS and the frequency-domain FxLMS algorithm.
It is found that the proposed method leads to a faster convergence which results in higher noise reduction especially when the frequency of noise varies continuously. Simulation results show that the noise reduction obtained depends upon the rate at which the frequency of the primary noise
varies. The higher the rate of variation and the duration for which the variation exist, the better the performance of the proposed method is over the conventional FxLMS algorithm in terms of noise reduction. The frequency-domain FxLMS algorithm is not found to be effective if the frequency
of primary noise varies continuously.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: Indian Institute of Technology
Publication date: 01 July 2016
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content