
A methodolgy for evaluating the structure-borne road noise prior to a prototype vehicle using direct force measured on a suspension rig
Numerous previous studies have been conducted on quantifying road noise through transfer path analysis (TPA) using the matrix inversion and the dynamic stiffness methods. However, the matrix inversion method is a calculation that always contains error, even when treated with the best
condition number found by trial and error iteration to match the calculation SPL (sound pressure level) to measured SPL. Furthermore, the caveat of the dynamic stiffness method is that it requires accurate dynamic stiffness value up to the frequency range of interest, which, in reality, is
rarely available and is challenging to obtain. Therefore, TPA using these two methods is only possible when a complete vehicle is available. For the sake of cost and time reduction, circumventing these limitations is crucial within the vehicle production period. The main focus of the present
study is to directly obtain the operational forces at the suspension mounting points neglecting the effect of the vehicle body through a special suspension rig. The suspension rig is verified through a comparative analysis with the actual baseline vehicle measurement up to 250 Hz. In addition,
an example approach for finding suspension's NVH performance improving factor using the rig benchmarking technique is introduced.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: Seoul National University
Publication date: 01 May 2016
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content