
A radial interpolation finite element method for 2D homogeneous and multifluid coupling acoustic problems
In the acoustics Finite Element Method (FEM), the typical problems of the four-node isoparametric element are low accuracy and high sensitivity to the quality of mesh in the finite element mesh model. Therefore, a Radial Interpolation Finite Element Method (RIFEM), whose shape function
is constructed by using the meshless radial interpolation technique and the partition-of-unity method, is proposed for the 2D homogeneous and multifluid coupling acoustic problems. In acoustic RIFEM, to maintain the integral accuracy of the sound pressure derivatives and apply the accurate
boundary conditions easily, the acoustic system stiffness matrix and the vectors of the boundary integrals are constructed by using the bilinear shape function. On the contrary, to improve the interpolation accuracy of the approximated sound pressure function, the acoustic system mass matrix
is constructed by the shape function of RIFEM using the four-node isoparametric element. Numerical examples on a 2D homogeneous acoustic tube, the 2D homogeneous acoustic cavity of a car and a 2D multifluid coupling tube verify that RIFEM achieves higher accuracy, when compared with the linear
FEM and the smoothed FEM.
Document Type: Research Article
Affiliations: Hunan University
Publication date: 01 May 2013
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content