
Analysis of circumferential skew effect on rotor/stator interaction noise reduction
The rotor/stator interaction noise as a type of the dipole sound source is generated from the pressure fluctuation on the stator vanes. The noise is one of the main noise sources in multistage turbomachines such as axial compressors and fans. In the paper, the effect of circumferential
skewed angle on the rotor/ stator interaction tone noise reduction was studied. The Ffowcs-Williams and Hawkings (FW-H) acoustics model showed that the amplitude of pressure fluctuation on the stator vanes was the main impacting factor of the interaction noise when the sound source was compact.
Consequently, the pressure fluctuation on the stator vanes was calculated using computational fluid dynamics (CFD) method to study the relationship between the circumferential skewed angles and the amplitude of pressure fluctuation at BPF (blade passing frequency) and its harmonics. The research
results concluded that the test fan with circumferential backward skew rotor blades and backward skew stator vanes could reduce the amplitude compared against other test fans. The sound pressure levels (SPLs) of the interaction tone noise calculated using the FW-H acoustics model also supported
the conclusion
Document Type: Research Article
Affiliations: Shanghai Jiaotang University
Publication date: 01 May 2013
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content