
Influence of various uncertainty factors on the result of beamforming measurements
In a previous publication by the authors, a virtual measurement environment for sound-source localization on vibrating structures was presented. Based on surface velocity data obtained from Laser-Scanning-Vibrometry measurements, the Boundary-Element-Method (BEM) is used to simulate
the sound radiation from a vibrating plate towards a microphone array under ideal conditions. The advantage of this approach is that the measurement conditions can be perfectly controlled and real sources can be considered, without restrictions on the type of source. The virtual measurement
environment will now be used to investigate the effect of some of the uncertainties that can be encountered during beamforming measurements. For the most common planar array geometries, the beamforming source maps will be calculated for varying Signal-to-Noise Ratios (SNR) and different array
imperfections (uncertainties in the microphone locations and deviation from the omni-directional directivity pattern of the microphones). As a measure of comparison, the two-dimensional normalized cross-correlation coefficient between the ideal source map and the source map with added uncertainties
will be evaluated and discussed.
Document Type: Research Article
Publication date: 01 May 2011
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content