
A fast numerical formulation for simulating vehicle compartment acoustics
Vehicle noise, vibration and harshness (NVH) problems can be analyzed using numerical methods such as finite element and boundary element analyses that are generally complex and time consuming. In order to reduce the analysis time and calculation burden, this paper discusses the development,
use and verification of an enhanced, simplified numerical acoustic cavity formulation for the analysis of vehicle NVH problems. The proposed simplified vehicle model can incorporate multiple acoustic cavities, such as an engine compartment, passenger compartment, and connecting bulkhead compartment,
joined by several flexible panels. The damping matrix of the model is constructed from measured acoustic absorption data and panel properties. Utilizing this approach, both single-cavity and three-cavity models are created, different floor panel configurations are investigated, and transfer
functions predicted by these models are compared with corresponding transfer functions from measured data. The comparison results show that the proposed simplified model can provide reasonable accuracy for the analysis and simulation of vehicle compartment acoustics.
Document Type: Research Article
Publication date: 01 May 2009
NCEJ is the pre-eminent academic journal of noise control. It is the Journal of the Institute of Noise Control Engineering of the USA. Since 1973 NCEJ has served as the primary source for noise control researchers, students, and consultants.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content