Skip to main content

Reduction of vortex-induced vibrations of a cantilevered hydrofoil with passive piezoelectric shunt

Buy Article:

$15.00 + tax (Refund Policy)

This work first investigates the ability of a low order fluid-structure model to fit the vortex-induced vibrations (VIV) observed on a truncated hydrofoil in a hydrodynamic tunnel. A particular VIV area is scrutinized, for which a hydrodynamic excitation mechanism due to a Karman-type vortex wake organization successively locks the first torsional and second bending mode of the cantilevered hydrofoil. Coupling two structure oscillators with a Van der Pol wake oscillator satisfactorily reproduces the amplitude response and the lock-in frequency. In order to build a low order model allowing to optimize control strategy, a fourth degree of freedom corresponding to the electric circuit of a resonant piezoelectric shunt has been added. Composed of an inductance and a resistance connected to a piezoelectric patch, the passive shunt was tuned to minimize the vibration amplitude in the frequency lock-in range. Model predictions are finally compared with experimental results.

The requested document is freely available to subscribers. Users without a subscription can purchase this article.

Sign in

Document Type: Research Article

Affiliations: 1: LMSSC, LISPEN, L2EP 2: Conservatoire national des arts et métiers (Cnam), LMSSC, HESAM Université 3: Arts et Metiers Institute of Technology (Ensam), L2EP, HESAM Université 4: Arts et Metiers Institute of Technology (Ensam), LISPEN, HESAM Université

Publication date: 04 October 2024

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content