Skip to main content

Overview of concept designs and results of the New Acoustic Insulation Meta-Material for Aerospace (NAIMMTA) project

Buy Article:

$15.00 + tax (Refund Policy)

Reducing aircraft cabin noise to improve the comfort of passengers is an important and challenging issue in aeronautics. Relatively uncomfortable high noise levels of around 80 to 90 dBA with strong low frequency range components (below 500 Hz) and a tonal character, predominantly related to the engine fan during take-off and approach, are deemed critical. The conventional acoustic materials seem to have reached their physical limits in terms of sound proofing, and therefore non-conventional solutions, such as metamaterials, are sought for their promising performance such as, a significant noise attenuation rate (dB/m), and the capability to be tuned at tonal or narrow band frequencies. An international collaborative project was created to develop novel technologies aiming at improving the existing noise control systems by obtaining an additional 5 dB noise reduction in the low frequency range (100 to 400 Hz) without deteriorating the thermal insulation. Moreover, the proposed solutions were expected to be tunable with respect to tonal noise (bandwidth of 5 Hz) or narrowband noise (bandwidth of 40 Hz). A major design and integration constraint imposed that the metamaterial had to be embedded in the current existing insulation blanket and add a maximum of 20% additional mass in comparison to the conventional insulation. This paper presents an overview of the various solutions developed from numerical simulations and novel manufacturing procedures development and optimization to performance characterization and validations.

The requested document is freely available to subscribers. Users without a subscription can purchase this article.

Sign in

Document Type: Research Article

Affiliations: 1: National Research Council Canada, Flight Research Laboratory 2: Mecanum Inc. 3: École de Technologie Supérieure de Montréal 4: Mechanical Engineering, Université de Sherbrooke, Centre de recherche acoustique-signal-humain de l'Université de Sherbrooke (CRASH-UdeS)

Publication date: 30 November 2023

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content