
A fast multipole boundary element method for acoustics in viscothermal fluids
Standard numerical models in acoustics rely on the isentropic Helmholtz equation. Its derivation assumes adiabatic and reversible, i.e., dissipation-free, wave propagation. Sound waves in fluids are, however, subject to viscous and thermal losses. These losses originate from viscous
friction and heat conduction, leading to the formation of acoustic boundary layers. Considering these effects becomes significant in setups with acoustic cavities of similar dimension as the boundary layers. Recently, boundary element methods (BEM) accounting for the viscothermal dissipation
have been proposed. These methods limit the discretization to the surface of the fluid domain and require significantly fewer degrees of freedom than comparable finite element models. However, the BEM coefficient matrices are fully populated, resulting in high computational costs and storage
requirements. This study develops a new BEM formulation for acoustics in viscothermal fluids that uses the fast multipole method - a low-rank approximation technique based on a hierarchical subdivision of the computational domain - to alleviate this shortcoming. It is shown that the fast viscothermal
BEM improves the algorithmic complexity over the conventional formulation, reducing both the memory requirements and solution time. The results indicate good scalability of the method making it feasible for larger applications such as acoustic metamaterials.
Document Type: Research Article
Affiliations: Technical University of Munich
Publication date: 05 November 2023
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content