Skip to main content

Free Content Sound attenuation by acoustic metamaterials applied to kitchen hoods

Download Article:
In a society where the vast majority of people spend their time inside buildings or vehicles, the need to filter the air is essential to ensure a certain level of comfort. The integration of air exchanger systems in these enclosed spaces generates noise pollution which can deteriorate the quality of the air. Thus, controlling the noise generated by these systems becomes a major challenge for the construction industry. Recent traditional solutions such as acoustic sonic crystals only allow high frequency noise control. One solution is the incorporation of inner structured acoustic materials for the control of low frequency transmission. This paper proposes a coupling of sonic crystals and structural acoustic materials for the control of sound transmission at low and high frequencies. To achieve this, research and simulations of the acoustic properties of various metamaterial models under the COMSOL software were established as well as a system of the selected solutions, using the transfer matrix method. Experimental impedance tube analyses are being carried out for varying geometries, along with a fabrication method for prototyping.

Document Type: Research Article

Affiliations: 1: Université de Sherbrooke 2: National research Council Canada

Publication date: 25 May 2023

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content