
Relationship between vortex shedding noise and remotely-sensed surface pressure fluctuations of a structured porous-coated cylinder
Tonal noise suppression of a cylinder placed in uniform flow has been achieved, to some extent, by coating it with a structured porous material as a form of passive flow and noise control. A previously studied structured porous-coated cylinder is investigated in an anechoic wind tunnel
to determine the relationship between the far-field vortex shedding noise and the pressure recorded on the outer porous surface. To date, no experimental studies have been conducted on the surface pressure of any type of porous-coated cylinder. Acoustic measurements are obtained using an equispaced
microphone arc array and simultaneously unsteady surface pressure fluctuations are obtained around the cylinder mid-span circumference using remote-sensing techniques. By obtaining simultaneous time-dependent signals, more light is shed on the underlying noise-reduction mechanism of the structured
porous-coated cylinder. In this paper, strong relationships between surface pressures and acoustic signals are revealed at the vortex shedding frequency. A spatio-temporal relationship between surface pressure and vortex shedding phenomena is also presented that helps explain the role of the
structured porous media in passive flow and noise control.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: Southern University Of Science And Technology
Publication date: 01 February 2023
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content