Skip to main content

Diesel Engine Noise Source Visualization by Using Compressive Sensing Algorithms

Buy Article:

$15.00 + tax (Refund Policy)

To identify sound source locations by using Near-field Acoustical Holography (NAH), a large number of microphone measurements is generally required in order to cover the source region and ensure a sufficiently high spatial sampling rate: it may require hundreds of microphones. As a result, such measurements are costly, a fact which has limited the industrial application of NAH to identify sound source locations. However, recently, it has been shown possible to identify concentrated sound sources with a limited number of microphone measurement based on Compressive Sensing theory. In the present work, sound radiation from the front face of a diesel engine was measured by using one set of measurements from a thirty-five-channel combo-array placed in front of the engine. The locations of significant noise sources were then identified by using two algorithms: i.e., l1-norm minimization and a hybrid approach which combined Wideband Acoustical Holography (WBH) and l1-norm minimization. It was found that both algorithms can successfully localize and visualize the major noise sources over a broad range of frequencies, even though using a relatively small number of microphones. Finally, comments are made on sound field reconstruction differences between the two algorithms.

The requested document is freely available to subscribers. Users without a subscription can purchase this article.

Sign in

Document Type: Research Article

Affiliations: 1: 3M Company 2: Purdue University 3: Cummins Inc.

Publication date: 01 February 2023

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content