
Acousto-optic sensing for near-field acoustic holography
Near-field acoustic holography (NAH) is a very powerful and widely used technique for the study of complex acoustic radiators. NAH enables to quickly understand how a complex source radiates into the medium. The technique is particularly suitable at low frequencies. At high frequencies,
a dense transducer interspacing is required, and the measurement microphones can disturb the studied sound field when their size is comparable to the acoustic wavelength. In this study we examine the use of acousto-optic sensing in NAH. Acousto-optic sensing uses light beams as the sensing
element, making it possible to acquire remote and non-invasive measurements without introducing extraneous objects in the vicinity of the source. The pressure, particle velocity and intensity fields, as well as the sound power radiated by a complex source, are determined from measurements
in the near-field with an optical interferometer. The presented results demonstrate the potential of optical sensing to non-intrusively characterize sound fields, particularly at high frequencies.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: 1: Technical University Of Denmark (DTU) 2:
Publication date: 01 February 2023
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content