
A comparison between the high-frequency Boundary Element Method and Surface-Based Geometrical Acoustics
The audible frequency range covers many octaves in which the wavelength changes from being large with respect to dominant features of a space to being comparatively much smaller. This makes numerical prediction of a space's acoustic response, e.g. for auralisation, extremely challenging
if all frequencies are to be represented accurately. Different classes of algorithm give the best balance of accuracy to computational cost in different frequency bands - 'wave solvers' such as Boundary Element Method (BEM) at low frequencies and Geometrical Acoustics (GA) methods at high
frequencies. But combining their output data can be an awkward process due to their very different formulations. This is particularly important for early reflections, which give crucial spatial perceptual cues. Hence there is a need for a unified full audible bandwidth algorithm for early
reflections. This paper will describe ongoing research to develop such an algorithm by exploiting synergies between high-frequency BEM and GA. It will describe how appropriately chosen oscillatory basis functions in BEM can produce leading-order GA behaviour at high frequencies and explore
how interactions between these compare to the same interactions arising in a surface-based Geometrical Acoustics scheme.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Affiliations: University of Salford
Publication date: 01 February 2023
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content