
Dynamic force measurement to assess NVH performance of electric motors
The electromagnetic (EM) force induced motor whine is a major noise source of hybrid and electric vehicles. Experimental quantification of dynamic EM force is highly desirable to assess the NVH performance of electric motors. However, it is difficult to measure EM forces directly on
the stator teeth. This paper describes a new indirect method to measure the dynamic forces at stator mounting ear locations. First, high-precision tri-axial piezoelectric force ring sensors are selected and calibrated to measure dynamic forces under compressive mean loading. Next, special
motor housings are designed and built to accommodate force sensors between the stator ears and the base mounting plate. Force sensors are then aligned with the stator circumferential directions to measure dynamic forces in radial, tangential and axial directions as a function of motor torque
and speed. The new technology is successfully implemented for electric motors of GM's Spark and Bolt EVs. Measured dynamic forces correlate well with finite-element analytical results and show consistent trends with noise and vibration responses. This confirms the dynamic mounting force can
be used as an effective and measurable indicator to optimize NVH designs for electric motors.
Document Type: Research Article
Affiliations: General Motors Company
Publication date: 24 June 2022
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content