Skip to main content

Free Content Design and simulation of Helmholtz resonator assembly used to attenuate tire acoustic cavity resonance noise

Tire acoustic cavity resonance noise (TACRN) is a typical annoying lower-frequency interior noise of a passenger car. The widely used attenuating method of attaching the porous sound absorption material in tire cavity can reduce TACRN effectively, but causes the increase of tire-wheel assembly weight and cost, also the poor durability. Additionally, the Helmholtz resonator (HR) is also used in the wheel of some cars although having only narrow effective band. The existing investigation shows that the frequency of TACRN varies with the car speed and load and also has the split characteristics. The change of TACRN frequency causes a certain difficulty to suppress TACRN effectively. Aiming at this problem, in this paper, TACRN frequency range of a specific tire cavity under different operating conditions is first calculated and analyzed. Then, for a specific aluminum alloy wheel, a HR assembly including several HRs is designed to make the natural frequencies of HR assembly cover the TACRN frequencies. Finally, the reduction effect of TACRN is simulated and evaluated by comparing the sound fields in tire cavity with/without HR assembly under same volume velocity sound source. This work is helpful for attenuating TACRN effectively under the changing operating conditions.

Document Type: Research Article

Publication date: 01 August 2021

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content