
Subtractive modeling using the reverse condensed transfer function method: influence of the numerical errors
Decoupling procedures based on substructuring methods allow to predict the vibroacoustic behaviour of a given system by removing a part of an original system that can be easily modelled. The reverse Condensed Transfer Function (rCTF) method has been developed to decouple acoustical
or mechanical subsystems that are coupled along lines or surfaces. From the so-called condensed transfer functions (CTFs) of the original system and of the removing part, the behaviour of the system of interest can be predicted. The theoretical framework as well as a numerical validation have
been recently published. In the present paper, we focus on the influence of numerical errors on the results of the rCTF method, when the CTFs are calculated using numerical models for the original system and/or the removed part. The rCTF method is applied to a test case consisting in the scattering
problem of a rigid sphere in an infinite water domain and impacted by an acoustic plane wave. Discrete green formulation and finite element method are used to estimate the CTFs. Numerical results will be presented in order to evaluate the sensitivity of the method to model errors and the potential
promises and limitations of the method will be highlighted.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content