
Phononic crystal sandwich for broadband and low frequency acoustic insulation under diffuse field
Light and thin structures exhibiting high sound insulation over a wide frequency range are a major industrial concern, especially in the transport and building sectors. Phononic crystals constitute promising solutions to solve this issue due to their particular dispersion properties.
In this work, we build a system consisting of a well-known sandwich panel comprising a soft elastic core layer hosting periodically arranged rigid inclusions. Diffuse field measurements show a huge improvement of the Transmission Loss compared to the system without inclusions. In fact, for
this kind of panel, the structured core enables Bragg band-gap opening for guided slow propagating waves leading to low frequency and broadband enhancement of the Transmission Loss. Using a 3cm-thick material we are able to improve the response from 300 Hz on (λ/38 in air). We then
develop a finite elements model to achieve a precise description and understanding of the problem. We also propose a numerical tool to analyze the system's band-structures from a vibroacoustic point of view. It proves very useful for the further development of practical solutions.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content