Skip to main content

Free Content Using Inverse Transient Statistical Energy Analysis to determine the transient power input from a heavy impact on floating floors

To aid design decision concerning heavy impacts on heavyweight floors, it is necessary to be able to predict Fast-time weighted maximum sound pressure levels (Lp,Fmax) in the receiving room. For excitation directly on the heavyweight floor this can be carried out using Transient Statistical Energy Analysis (TSEA) in a predictive mode. However, the performance of floating floors is not always possible to accurately predict hence an inverse approach to TSEA, referred to as ITSEA, has been developed to determine the transient power. This paper compares the prediction of the Lp,Fmax using TSEA with normalized transient power input determined by ITSEA with measurements conducted in two test chambers with and without floor small floor toppings. For one-third octave bands, the maximum difference in Lp,Fmax between measurement and TSEA ranged from 5.3 to 8.3dB and 6 to 7dB when using W`in,ForcePlate and W`in,ITSEA respectively. For octave bands, the maximum difference in Lp,Fmax between measurement and TSEA ranged from 2.1 to 7.5dB and 2 to 7dB when using W`in,ForcePlate and W`in,ITSEA respectively

Document Type: Research Article

Publication date: 01 August 2021

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content