
Sound absorption of a finite flexible micro-perforated panel absorber back by a rigid air cavity filled with a fibrous porous material
Back by a rigid cavity filled with a layer of porous layer, the sound absorption performance of a micro-perforated panel (MPP) can be enhanced in comparison with other resonance based sound absorbers. In this paper, a theoretical model of a finite flexible MPP back by a rigid air cavity
filled with a fibrous porous material is developed to predict normal sound absorption coefficients. Displacements of MPP and sound pressure field in fibrous porous material and acoustic cavity are expressed using a series of modal functions, and the sound absorption coefficients of MPP system
are obtained. Additionally, comparison of energy dissipation by MPP and fibrous material is performed to identify effects of a fibrous material on the sound absorption of a MPP. As expected, at anti-resonance frequency of an MPP, the fibrous material provide an alternative energy dissipation
mechanism.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content