
An experimental methodology to study engine gear rattle problems
Gear induced noise represents a major part of overall automotive drivetrain noise. Gear rattle noise is caused by strongly nonlinear dynamic behavior of the gear pair, primarily due to external torque of speed fluctuations under lightly loaded conditions. Such loading conditions cannot
be generated by using the conventional gear dynamics test set-ups that employ power recirculating gearbox arrangements or conventional electric motors. In this paper, a new test set-up is introduced to emulate the actual torque/velocity fluctuations of the input and/or output members of a
gear train through three-phase synchronous servo-motors. In addition to establishing backlash boundaries, a pair of absolute encoders are used to measure the relative motions of the gears as well as their impacts along the drive and coast sides flanks or gears. Torsional vibratory behavior
of a gear pair is presented at different backlash values under several input/output fluctuation conditions along with the companion sound pressure measurements.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content