Skip to main content

Free Content Development of disc spring stack containment methods for vibration isolation

Cone disc springs exhibit quasi-zero stiffness behavior that is useful in isolating objects from low frequency vibrations. However, the stroke of a single disc spring is too low for most applications, and springs are stacked to increase the displacement. A method to contain the isolator stack then becomes critical for practical uses. Many challenges in developing these containment methods have been identified and can be collectively described as how to appropriately contain the stack without affecting isolation performance. In this work, three designs are considered: a retaining ring design, tube and shaft design, and zero poisson ratio sleeve design. Disc spring stacks with containment method are built, and load-deflection curves are measured and compared with standalone stacks. Under quasi-static compression testing, each containment method has minimal effect on the standalone stack load-deflection curve. However, significant differences in isolation performance are observed in vibration testing and found to depend on characteristics such as lateral stability, lateral strength, and degrees of freedom. Lastly, advantages, disadvantages, and appropriate applications for each containment method are summarized. The conclusions of this work are that containment method is an important variable in the application of disc spring isolators and robust, versatile containment designs have been demonstrated.

Document Type: Research Article

Publication date: 01 August 2021

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content