
Acoustical analysis of sound generated by synthetic jet actuators
Piezoelectrically driven synthetic jet actuators (SJA) are useful in various applications such as flow control, heat transfer and camera lens cleaning. This paper aims to better understand the fundamental sound generation mechanisms of synthetic jet actuators and investigate methods
for the noise reduction and vibration control. The SJAs tested in this paper are driven by sinusoidal signals at frequencies ranging between 100 and 600 Hz, and can produce pulsated air jets at high velocity, up to 100 m/s. The sound generated by these devices, generally tonal and rich in
harmonics, was modeled as the superposition of two monopoles associated with the breathing mode of the diaphragm and of the pulsated jet. Component analyses showed that the two monopoles cancelled each other partially depending on their amplitudes and phase relationship. A computational aeroacoustic
model of the SJAs was built using PowerFLOW, a computation fluid dynamic simulation software. Simulation results were compared with jet velocities measured with a hot-wire anemometer and flow patterns were analyzed. Active and passive control methods were investigated, and a sound quality
analysis was performed in order to reduce the overall radiated sound power and improve sound quality.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content