
Power balance analysis of nonperiodic structural components from a model converted from FEM to SEA.
Using Statistical Energy Analysis (SEA) to characterize the power flow within a vibroacoustic system is a challenging task when the subsystems have irregular shape and complex construction. Retrieving analytical solutions for the ordinary SEA parameters is nearly impractical without
restricting simplifications and periodicity is usually not exploitable due to the lack of repetition patterns. A promising option to perform the power balance for such cases is to filter part of the information contained in a Finite Element Method (FEM) model of the system, in order to convert
it into a SEA model. In this paper, the Lorentzian Frequency Average and the Nonparametric Random Matrix Theory are applied to randomize the dynamic stiffness matrix of the FEM components from a system of industrial application. The obtained direct field dynamic stiffness matrices are employed
along the diffuse field reciprocity relationship as a general framework to determine the energetic content of each component. The results obtained with this procedure are evaluated against the ones from classical SEA and Monte Carlo techniques.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content