
Directivity of sound propagation from an commercial supersonic engine inlet
The effects of mean flow variations on sound propagation from an axisymmetric commercial supersonic engine inlet were studied using numerical methods. A finite element model of the inlet was constructed in Ansys Fluent and used to solve for flow fields given by different initial conditions.
Results from this model were fed into the aeroacoustic solver, Actran, and used to calculate far field radiated noise as well as the directivity of that noise. The acoustic source of this noise was a plane wave of a known strength placed at the fan face. In addition to assessing the effects
of mean flow on the radiated noise transfer functions, the duct modes of the model were compared across different flow regimes. Relationships between mean flow parameters and the directivity of duct modes are developed. The results of this study will be used in further studies to gain a deeper
understanding of how the underlying physics which govern the system create favorable or unfavorable directivity patterns.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content