
Broadband sound absorbers of multilayered micro-slit panels using Bayesian probabilistic inference
Micro-perforated panel absorbers can typically achieve either visual transparency or broadband absorption, but not both. This paper assesses the potential of Multilayer Micro-Slit panels to maintain both of these characteristics simultaneously. Micro-slit panels are similar to micro-perforated
panels, and can similarly achieve high absorption coefficients without fibrous backing materials. The arrangement of slits are better suited to visual transparency than perforated holes because it provides more unobstructed panel per perforated area. However, these types of absorbers are limited
to a narrow frequency bandwidth of effective absorption. By combining several panels into a multilayer assembly, broadband absorption becomes possible. The inherent complexity stemming from optimizing the parameters for multiple layers to meet a given design criteria necessitates the use of
the Bayesian framework. This probabilistic method rapidly hones in on the best parameters of each individual layer so that the overall composite meets the design goal. Furthermore, Bayesian inference implemented cyclically alongside panel fabrication and testing allows for corrections of fabrication
tolerances while assessing visual transparency.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content