Skip to main content

Free Content A Sound Insulation Prediction Model for Floor Structures in Wooden Buildings Using Neural Networks Approach

Recently, machine learning and its applications have gained a large attraction in different fields. Accurate predictions in building acoustics is vital especially in the design stage. This paper presents a sound insulation prediction model based on Artificial Neural Networks (ANNs) to estimate acoustic performance for airborne and impact sound insulation of floor structures. At an initial stage, the prediction model was developed and tested for a small amount of data, specifically 67 measurement curves in one third octave bands. The results indicate that the model can predict the weighted airborne sound insulation for various floors with an error around 1 dB, while the accuracy decreases for the impact sound especially for complex floor configurations due to large error deviations in high frequency bands between the real and estimated values. The model also shows a very good accuracy in predicting the airborne and impact sound insulation curves in the low frequencies, which are of higher interest usually in building acoustics. Keywords: building acoustics, airborne sound, impact sound, prediction model, neural networks

Document Type: Research Article

Publication date: 01 August 2021

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content