Skip to main content

Free Content Metamaterial plate with an arrangement of different resonators

Download Article:
Local resonant metamaterials have been widely studied for vibration suppression in the last 20 years. They produce band gaps, which are frequency regions where the wave is not allowed to propagate. They are an alternative to reduce vibration levels at lower frequencies when compared to phononic crystals, which require larger periodic cells to create band gaps at lower frequencies. The most common configuration for a local resonant metamaterial is a periodic cell of a known structure with one attached resonator. In this study, a plate with a periodic cell using two different resonators is analyzed. Some configurations of mass and stiffness for the two resonators will be discussed to pursue the best compromise between a wider band gap and a more considerable vibration attenuation. The dispersion relation for the proposed metamaterial unit cell will be calculated using the Wave Finite Element Method to evaluate these configurations. The frequency response function for a finite structure with the proposed arrangement will also be calculated using the Finite Element Method to compare the results.

Document Type: Research Article

Publication date: 01 August 2021

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content