
A neural network based noise suppression method for transient noise control with low-complexity computation
Over the decades, the noise-suppression (NS) methods for speech enhancement (SE) have been widely utilized, including the conventional signal processing methods and the deep neural networks (DNN) methods. Although stationary-noise can be suppressed successfully using conventional or
DNN methods, it is significantly challenging while suppressing the non-stationary noise, especially the transient noise. Compared to conventional NS methods, DNN NS methods may work more effectively under non-stationary noises by learning the noises' temporal-frequency characteristics. However,
most DNN methods are challenging to be implemented on mobile devices due to their heavy computation complexity. Indeed, even a few low-complexity DNN methods are proposed for real-time purposes, the robustness and the generalization degrade for different types of noise. This paper proposes
a single channel DNN-based NS method for transient noise with low computation complexity. The proposed method enhanced the signal-to-noise ratio (SNR) while minimizing the speech's distortion, resulting in a superior improvement of the speech quality over different noise types, including transient
noise.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content