
Study on target energy transfer of 3D acoustic cavity - plate coupling system with the membrane nonlinear energy sink
The target energy transfer (TET) between a membrane nonlinear energy sink (NES) and the acoustic medium inside a rectangular cavity is studied. The acoustic medium is interacted with a plate and multi-order modes coupling of the 2 structure is considered. Based on the modal expansion
approach, with Green's function, Helmholtz equation and the boundary conditions of the acoustic medium and the plate, the coupling coefficient matrix of the mode of 2 structures is derived. The equations of the membrane NES, multi-order modes of the acoustic medium and multi-order modes of
the plate are established, and numerical analysis is used to investigate the TET phenomenon. The results show that in condition of a single-point excitation to the plate, under a certain range of excitation levels, the membrane can be seen as a kind of NES, and the energy in the acoustic medium
can be unidirectionally transmitted to the membrane NES and attenuated, reducing the sound pressure level in the cavity. At the same time, it is found that the NES can suppress multi-order sound pressure of the acoustic medium at the same time, and realize the control of cascaded resonance
noise.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content