Skip to main content

Free Content Effects of moisturized inflow on compressor performance and aerodynamic noise

Download Article:
The effects of moisturized inflow on turbocharger compressor performance and aerodynamic noise were numerical analyzed in this paper. The gas-liquid two-phase flow method based on Euler-Lagrange model was firstly introduced. The influence of water concentration and water droplet diameter on compressor performance and internal flow characteristics at design speed were studied using the two-phase flow method. The compressor aerodynamic noise was also predicted at design condition under two different inflow conditions, including ideal inflow and moisturized inflow with 0.1% water concentration. The results indicate that moisturized inflow with an appropriate water concentration can reduce the outlet temperature of the compressor and improve the compressor performance, in which the water concentration is a dominant parameter. There is a phase transition process of water in the compressor with moisturized inflow, but moisturized inflow has little effects on the compressor internal flow characteristics. Moreover, the moisturized inflow also has influence on compressor aerodynamic noise.

Document Type: Research Article

Publication date: 01 August 2021

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content