Skip to main content

Free Content Noise shielding surrogate models using dynamic artificial neural networks

Download Article:
The optimal design methodologies in aeronautics are known to be constrained by the computational burden required by direct simulations. Due to this reason, the development of efficient metamodelling techniques represents nowadays an imperative need for the designers. In fact, surrogate models has been demonstrated to significantly reduce the number of high-fidelity evaluations, thus alleviating the computing effort. Over the last years, the aeronautical designers community has switched from a design approach predominantly based on direct simulations to an extensive use of metamodels. Recently, to further improve the efficiency, several dynamic approaches based on parameters self-tuning have been developed to support the metamodel construction. This work deals with the use of surrogate models based on Artificial Neural Network for the noise shielding of unconventional aircraft configurations. Here, the insertion loss field of the a Blended Wing Body is reproduced by means of advanced machine learning techniques. The relevant framework is the calculation of the noise emitted by innovative aircraft configurations by means of suitable corrections of existing well-assessed noise prediction tools. The self-tuning algorithm has demonstrated to be accurate and efficient, and the observed performance discloses the possibility to implement numerical strategies for the reliable and robust unconventional aircraft optimal design

Document Type: Research Article

Publication date: 01 August 2021

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content