
Inverse metacluster design using generative modeling for minimal scattering response
Metamaterials are subwavelength-sized artificial structures with the ability to manipulate incident waves in such a way that affects how the energy propagates throughout the medium. In acoustics, particularly placed scattering elements can reduce the total scattering cross section (TSCS)
response. We propose a method to inversely design acoustic metamaterial configurations using deep learning and generative modeling. Using our proprietary multiple scattering solver with MATLAB optimization toolbox, we generate a dataset of optimal configurations with minimized TSCS within
a discrete range of wavenumbers. We use this dataset to train a Conditional Wasserstein Generative Adversarial Network (cWGAN) to generate similar metacluster designs corresponding to specified input TSCS. To improve the coordinate recognition ability of the cWGAN, we include the novel CoordConv
layer in the generator and critic. After training, the cWGAN can produce a variety of optimal configurations given an expected TSCS. Evaluating TSCS of generated configurations shows that the model is capable of proposing scatterer configurations that are comparable or better than the dataset
within the optimized range.
Document Type: Research Article
Publication date: 01 August 2021
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content