Skip to main content

Free Content Singular Vector Filtering Method for Disturbance Enhancement Mitigation in Active Noise Control Systems

In multichannel active noise control systems, when reference signals are correlated, the disturbance enhancement phenomenon is likely to occur, i.e., the resulting sound is enhanced instead of being reduced in some frequency bands, if the filter is designed to minimize the total energy for all frequencies. In previous works, a truncated singular value decomposition method was applied to the system autocorrelation matrix to mitigate the disturbance enhancement due to the correlation of reference signals. Some small singular values and the associated singular vectors are removed, if they are responsible for unwanted disturbance enhancement in some frequency bands. However, some of these removed singular vectors may still contribute to noise control performance in other frequency bands, thus a direct truncation will degrade the noise control performance. In the present work, through an additional filtering process, the set of singular vectors that cause the disturbance enhancement are replaced by a set of new singular vectors whose frequency responses are attenuated in the frequency band where disturbance enhancement occurs, while the frequency responses in other frequency bands are unchanged. Compared with truncation, the proposed method can maintain the performance in the noise reduction bands, while mitigating the influence in disturbance enhancement bands.

Document Type: Research Article

Affiliations: 1: Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University 2: The Chinese University of Hong Kong

Publication date: 12 October 2020

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content